In mathematics, we use symbols to denote relations and we build mathematical sentences using numbers, pronumerals and relations.![For example, y = x, y > x, y < x, y >= x, y <= x are mathematical sentences that use the relation 'is equal to' (=), 'is greater than' (>), 'is less than' (<), 'is greater than or equal to' (>=) and 'is less than or equal to' (<=) respectively.](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_sV1a5_XR7ifE9-v6VQ69FUVU-6e3qqej4qbfVL4Ct28WX7vUYk516Gs74tTdZS21XzCF1p5kEorrvVxeyHTegd4SOcdiewR7VJ03dp7h5sjNGvKXreDpJ0L34DEQB1XKS5OKu7m3-BAjnFrAHfxlo5XeBIu1QQ=s0-d)
Consider the following sentence:
The cost (in dollars) of buying pens is equal to ten times the number of pens bought.
If c represents the cost in dollars and p represents the number of pens bought, then this sentence can be expressed mathematically as
![c = 10p where p is an element of N. When p = 1, c = 10. When p = 2, c = 20. When p = 3, c = 30. When p = 4, c = 40 etc.](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_sD6h9ovldHAj9CD9zMGuhQosz-g2AW35gJYfUvbSDW16G_TzPXMR3bQPIRUifjZhVIKb1jBnGamRsdomaAEUhqrvEXNVuAdaq7UPSnNXwfX66aMB0PVJ92PCQ9nhrm7Xbqve7kxqfICJQv91prLkb9KcSabNvE=s0-d)
![Thus the mathematical sentence c = 10p relates the values of c to the values of p. It defines a binary relation on the natural numbers.](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_uwb9ldkN0FQ0uxB3I50J2pzygtf1WvQeNsMjctogDA6b1LeUTzrNCTi7l47pkQRUVaEUlsoYbYxtgmntq8NdN-HFZ4zoKhsxMxLsl38Kkj8RWHdKjVJf_X1yI7ubLpUbnKUzi-4v7X8vCUXOgUb32lHLmhIij2=s0-d)
![The ordered (p, c) pairs (1, 10), (2, 20), (3, 30), (4, 40) etc. belong to the relation defined by c = 10p.](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_u-AK9O3lW0qjGGiecozl7kTwfULU-7bkVv9t7vZDjGzQO6YZlOkTDha-xYKsF8Y2TTbs8AGifWp4Xm4n0h7NKYcqOb3XePuYiFqjgUaRuRZqX267eYYUUjMK_0CkLYGNXEaZ0jLmjdBELS2E_6PzpLuUnB3a-X=s0-d)
This suggests the following definition:
A relation is a set of ordered pairs, and is usually defined by a rule.
![In the above example, {(1, 10), (2, 20), (3, 30), (4, 40), ...} is a relation and it can be described by the rule c = 10p, where p is an element of N.](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_uaBRHPyR5WDZ8KBlP1RaZHHU7bnNbud12CiuFRi6FKWxuG9N7w9AV2OBs4MX4VzWk7UoMRTSWbzAWsy-Qp4lvj95YvxJv9-qpye9iB5O4Gd8zdNKMLd3v5ZeuWkWfdg2DBqDwyRdtRGkVMRvepyJz8AMcjnpVc=s0-d)
Domain
The domain of a relation is the set of all first elements (usually x values) of its ordered pairs.
![In the example discussed, the domain = {1,2,3,4,...} or N.](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_tWdrpbmMPqtg0K7Y9rmitx7GHwjsg3wvbpu7D6r8-CiE-DmkKnYwpw7lo9lXHGDbYAbCTe3CvVo_NNNRTJnDJ3bPZWXA30I4k_nj09RH76u6AjPU1PbLro8I2sU0p5djZZk8oMCFTPA3yGTTAitmn3PPN_gI0r=s0-d)
Range
The range of a relation is the set of all second elements (usually y values) of its ordered pairs.
![In the example discussed, the range = {10,20,30,40,...}.](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vC8zlIlgxEcIjp8fBBOHDSJecnY26ih3zdHSQZbrHkPyW0kgiPYriQ6ZrBVdWrBscAjA6Y10n66gu0bgJ9e0D60PWLYE8cn16zbFOjObm2uEDScbbXLljvoCji0GGsm2_7Usf4T0kzGVB7PX_zTPk6OeFpnVo=s0-d)
Note:
The graph of c against p is discrete because p is an element of the set of natural numbers. The values of c depend upon p. So, we say that p is anindependent variable and c is a dependent variable.
Example 1
State the domain and range of the following relations:
![(a) {(1,1), (2,4), (3,9), (4,16), (5,25)} (b) {(0,8), (2,12), (4,16), (6,20), (8,24)}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_ujXbBvHETmgZjVeTHuVIYESVZPQ_GfGRGH6Bnmd5bWfbJ_23sp2AIXLn4yyt5C7OCVFJ5g0JxhAJz_5BeldGIv1J4Xs0OmAt_aMh09QvNDUDeSAb2XH1V4z24pUZ4MTXR0eZY_zh9fbbQjcF_sMCcWAyI6bmk=s0-d)
Solution:
![(a) Domain = {1,2,3,4,5}, Range = (1,4,9,16,25}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_u6KoN_tksWVD_OFue7BmfL3RmraqE9themYyGhCVqv7N3o8t6t0khvIawfb9bGDiJLNS3gFj4qP9vMBvzUaZ0XCNGIA14KC66JLDbnMtTkr0EoN8GjdZWXbWHWQuVVidEGZmv7f1TKrE5CcSuuYr6vnuj7mFk=s0-d)
![(b) Domain = {0,2,4,6,8}, Range = (8,12,16,20,24}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_uchdpQCOyggl-xw8VZUaNaPnSAnS1iObUuAcbrb_7IKldcO1f7-v0RywawOAzcg44eaYpuNfxJjpDZD8kQeMSq8e-Ex43_31uf3O2ZI_7zUOw7vZgUGUwJ1bV7Pi8wVstk5-SirO8YMWIlHOxqvIngWpiI7Pj0=s0-d)
Functions
A relation is said to be a function if each element of the domain determines exactly one element of the range.
![For example, the relation c = 10p, where p is an element of N, is a function since each element of the domain determines exactly one element of the range.](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_tvvyQQHhCvQ2n2-YrJVsDMWsUMBCKUFW2rkkcLj6QCuw8qrGNV4TZsTzBb0Cmr9nr1NEWp94wXZWddBXIu5wthQ6Ibr0TwOdrS83MWmHeyAnOXrsG24i8gegSjOT4wyKeMyCDVa3qEFNobdAQbxoRmx8AnLyQ=s0-d)
Domain of a Function
The domain of a function is the set of all first elements (usually x values) of its ordered pairs.
![For the function, c = 10p, where p is an element of N, the domain = {1,2,3,4,...} or N.](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_tUvEz1IE_qkdo07QxVMJHgcr-OQJw7PyxFDbpLlnR6i5eSPfCISffY3l_JvBkWcRuLITL3CfYHrV-nzH5rQNE_MWVt1JRGCPwmkMv7L22jbmHgZne9zrrEk1NARRj4jgE3V3fqjSJn_mcvCoI3bvNEvd3ul3zT=s0-d)
Range of a Function
The range of a function is the set of all second elements (usually y values) of its ordered pairs.
![For the function, c = 10p, where p is an element of N, the range = {10,20,30,40,...}.](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_v3vE97vSGAA7j6VTSXcJBCeaVHnNg0vuNx3eAV3ir-hYtIn_Hzih0cl-byU-RPJD-Y92-rBAKsSc27QA02xbLOulyAi33EjpVw7HfaE64FkzW0NMldq8I46Eelml0iji_ly5dtnpKkpP8Sxfv1z5ZkezhfJ8ap=s0-d)
Example 2
State the domain and range of the following functions:
![(a) {(2,6), (3,9), (4,12), (5,15), (6,18)} (b) {(1,11), (2,16), (3,21), (4,26), (5,31)}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_u92p2xv6m9YhOd00SnFKeBCfuk4jpRi7PQ9FsewzkdkQC85n7zM2olTQ9cq_CLBKGdxFh0BtaGSqGH08ht4cGpDar7y_Q5Az-onAXFPp8y-9ocjk2I-0dGrbkdc2uHCw3Isb49Tsm24IkycLE7Bqc-bqPR6rA8=s0-d)
Solution:
![(a) Domain = {2,3,4,5,6}, Range = (6,9,12,15,18}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vlb8ccnx7XNOaM49xYHFtqRCWGyetzRylfe2m2HjG510WIxgMNvhwBRDqPO4RFuQ-5pU2FMsFH4JQYDhcqrOv7b8JAtb7mY9MUMIigXFM2QlaS7t0GMJKOiOw0Hl6fAHRky_rWZq4FPtiHmLuNkWgW2FCZOcg=s0-d)
![(b) Domain = {1,2,3,4,5}, Range = (11,16,21,26,31}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_tPK_6fAgpQplq8Z7NYvIXErmIMuujoV_pJ5t72s9KBUz1hZZff3zVdEobfUb_fluDnRkTjPo5G0WgVPzrSM-RXd00rU4OEOhce6nw1-kCTaDIkU9wJuvrTtKh_Xm6QOlkjYqx6qDkFkvHJCMIciwtN0tZ5ew8Z=s0-d)
Gradient of a Straight Line
|
The gradient of a straight line is the rate at which the line rises (or falls) vertically for every unit across to the right.
That is: |
![Gradient = Rise / Run = Change in y / Change in x = (y2 - y1) / (x2 - x1)](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_scswd41RF1InETMa-5EkGqu298LbvUei0cWd2GoKe5et5tRnO1dS2DVBRbpgtVV-S_0GtIK11yp9CT0RXvIIfKfRbZoiGIWJpPRsLtFzX0jsIZtxxBqnCNil1saRLQjBaB3phzW9Z8D0DOfl3_hdcovZc=s0-d)
| ![A linear graph on the Cartesian plane shows the line PQ defined by the point P(x1, y1) and Q(x2, y2). The rise and run between the two points is shown.](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_t3W3M0D3VFlcLCfHSIX7y-WPfFhF2d91izdiPj0-Xw1tRfeztXEyUpf8cdpQB1CqYGYd61YPIm08BGjf1w4uWj72BaRQtKlAFizAeAvzGSsb5mYRjX4iCYP_dqQOcfBNfUywNOJqJoz6_oBg5C5l1iDFSpv8E=s0-d) |
Note:
The gradient of a straight line is denoted by m where:
![m = (y2 - y1) / (x2 - x1)](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_trX3dCxZEXQT-T5YxOOV0WY5D2NuSNDjxlwcCSgZg0Lu08S0Mnydoq3BB3nbWbWlULypGxdPI0isyYXKjT6MgpkUG_ptr8PEDjJscZR7ebntblTDf6Yi1sZkKjbZzsqNCmBiBxGVlBaoldAgXLv82jrmVlZnE=s0-d)
Example 3
Find the gradient of the straight line joining the points P(– 4, 5) and Q(4, 17).
|
![The points P(-4, 5) and Q(4, 17) form a straight line on the Cartesian plane.](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_uhAHkRE4Jv3L7ro1irkbxPWvHUaS0VLmPsTuMJG3Ba4jFxpC9vN8eXJjKb2H_At7YWClRu0mEEV3X3XfVqWfEEipVTlRECbbAqUemn_HfPZk93vbbHrih6IIe9f1Q8ypqWjseApX-LriA1sWji8skWYE3Z0nk=s0-d) Solution:
![m = (y2 - y1) / (x2 - x1) = (17 - 5) / (4 - (-4)) = 12 / 8 = 1.5](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vsO4ZcR2LhDsDRc5x1oo3IwumqUIPTcUhz2kgogJm1eJA8A9mn9TlMn-NT1t03X3rrxaUOn4LcPxM9FfVqg-fOLZxa0P5IGdQXFd4MQTw0frQpN3TV_W6Gcj9Fg-ohIZUq7QQs6lDiemS59_QG-Qv1kDi6ZQ=s0-d)
So, the gradient of the line PQ is 1.5. |
|
Note:
If the gradient of a line is positive, then the line slopes upward as the value of x increases.
Example 4
Find the gradient of the straight line joining the points A(6, 0) and B(0, 3). |
Solution:
![Let (x1, y1) = (6, 0) and (x2, y2) = (0, 3).](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_s_ieVJqFvli15IiSXptqOhCshGupZn3NySaI0ucjWLOIUmXIzvY7msk11Z8c5T9XqsF7wse0go4t_ab72dpJyPZvxQX9DRz8U-qdHs6tNMAzXKHkOwtMHJfqzbYorbdJ3_xIc2n3-qHbrT7dtvROe7BVzTZFM=s0-d)
![The points A(6,0) and B(0,3) form a straight line on the Cartesian plane.](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_skM1AvoZJh2Z4j675O0ZAGf0ore6BAx6IfRwpbEsxGP7EQ6WJ185_u4Rq6A0fc-Q9q2t5NHrAqygr16CCwfGEnVqaVBQLYcv2kx9bg1KgJ0-xOQkOc29VGjO8_s5XtFZfZdecgF6e2n5bm4n8z_tx7RhnN5gE=s0-d) ![m = (y2 - y1) / (x2 - x1) = (3 - 0) / (0 - 6) = 3 / -6 = - 1/2](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vAhuaXvWVZ1FGqY5jHI8gJ72FasagT_ya-f1aO8f2zeRe8oWgwzqpChDFdJBpgDl4_6Kj3hC2KvkIADG5Mm2wsxawQD2YcWJzoszjRZ4k7txKUYbBKwpsu4bRikAcIeraL2XpYG63V_-UiRXdG5J_FwitUQcc=s0-d) ![So, the gradient of the line AB is - 1/2.](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vLXPNYvwAIEVB0NbZdb-JzUiWWWR-5648nKF-SAd8Qgdyw9Yu5e2y1iWm-G0FC4FpXeEfKXtEUE1JCgMY01odwF3oy1f-ikpIhqcAuj_-mOQw6ncUzemmNuVbJOP686mcQwWKvyS7ta_2qx_3xw_2qkzYp8U4=s0-d) |
|
Note:
If the gradient of a line is negative, then the line slopes downward as the value of x increases.
Applications of Gradients
Gradients are an important part of life. The roof of a house is built with a gradient to enable rain water to run down the roof. An aeroplane ascends at a particular gradient after take off, flies at a different gradient and descends at another gradient to safely land. Tennis courts, roads, football and cricket grounds are made with a gradient to assist drainage.
Example 5
A horse gallops for 20 minutes and covers a distance of 15 km, as shown in the diagram.
Find the gradient of the line and describe its meaning.
![The graph of distance, d, in km against time, t, in minutes depicts the horse's journey from the point (0,0) to the point (20,15).](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_uFaLoD4_-56aJSQ2GzZyy0Jb_RGW1hUhLhgK2ZJZ39Szbfk4QfQYY7T-7eU_dN33blH4UspdYD36MNsc77OQq1nvsXZj7HtFm4BjOzqVaqP4rzJQTHXdvC5Mj3HijiRdNPan9F59okDyHw7pKSGjZxGRDbbXg=s0-d)
Solution:
![Let (t1, d1) = (0,0) and (t2, d2) = (20,15).](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_sfU3rmUo4mCxcH0IZpaQGcMezSeLbA6-elKI1pMN9ko0MzgDH_UM1KTO-YEIjLX_kU7BbJ2O85L4lZyi1gqiKpDkN7KoD4vdD4vV-ALBhKTTqbrC6_D4zeLZbWC9Zb_3W5qbyTVov9F7_ncSgJODjeuwlXX1g=s0-d)
![Now, m = (d2 - d1) / (t2 - t1) = (15 - 0) / (20 - 0) = 15 / 20 = 3 / 4](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_twubgzoVFsVjg36dtqxxpRsVP2bsd5ETSDWzRXHwLHfY_h9YHcgoz4tIF5YrQR47tJMi99_aTraZxMbWAjSaicPprQJJA_H2UEHZh-AdBCLgDN7OEr7HkPeFPjV5ZdjDx5rP4b2ytYniTgLCcjyrHDwwO6qs0=s0-d)
In the above example, we notice that the gradient of the distance-time graph gives the speed (in kilometres per minute); and the distance covered by the horse can be represented by the equation:
![d = 3/4t {Because distance = speed * time}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_uLBHOgyhDsQsd58QOaNDWFdWG7TuOQMkK6rikZMLojQ_2D38eXuHiRdtntUynM3V_rLSjrZPW8RssB9Ikb2EdSOZb1UcuXEvu5BnCS_dT5F6UpgjgvGLClErCnBIErv62s_EMMNK1kkaUH2YE6TVhT5vJR_g=s0-d)
Example 6
The cost of transporting documents by courier is given by the line segment drawn in the diagram. Find the gradient of the line segment; and describe its meaning.
![The graph of cost($), c, against distance, d, in km shows the points A(0,5) and B(6,23) forming a straight line.](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_s_Q0WNrx3xDSfP116zJE2Wc5EEPxr0gQ2c5ijQ-D2Z9wXrur69AcfgwfKQv_4lg0LWUkvdY4qiZsFbTJ5OAqg0l4p_MF3iIIVyu2kNO2GnbBnVMME-VhQAweJ1JF0M_Hfjwyz_6uBLRDs0_Do05pWOm2ZrWA=s0-d)
Solution:
![Let (d1,c1) = (0,5) and (d2,c2) = (6,23).](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_t1SQishkXuPGcoqNW8UALqSX_NQJi-K4WVXm3Huy8SriVTklS5XYHHpkQ_CvfFg1xnYhvoBt_Ud8EOUNHWSyzsoNH9ztOySgqYTygmaZB65k3oWfip7AKlRHO3lpY3YNzx_rosIFV1ATzPo9MupPxSrfoOpJw=s0-d)
So, the gradient of the line is 3. This means that the cost of transporting documents is $3 per km plus a fixed charge of $5, i.e. it costs $5 for the courier to arrive and $3 for every kilometre travelled to deliver the documents.
Equation of a Straight Line
|
To establish a rule for the equation of a straight line, consider the previous example.An increase in distance by 1 km results in an increase in cost of $3. We say that the rate of change of cost with respect to distance is $3 per kilometre.
The information given in the graph can be represented by the equation c = 5 + 3d. That is:
In general:
A line with equation y = mx + c has gradient m and y-intercept c.
![y = mx + c where m is the gradient and c is the y-intercept](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vfKNcWn0bE1WwibjrfbnxCmyA9xh9tHdPQDo3T-61pS7gmDqAnfUCjDWdQa_xF7G5VOJ8qdWkKLl6frjTSDwMJxeSX3SDpv_bM9ivspeAEYhRcP0GxYlhOYJ7fESE4x-rJ9shbjwumSf0rJ9fQvsEOVGtffA0=s0-d)
The gradient of a straight line is the coefficient of x.
Particular Case
If a straight line passes through the origin, then its y-intercept is 0. So, the equation of a straight line passing through the origin is
y = mx
where m is the gradient of the line.
![The graph of y = mx which passes through the origin at (0,0).](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_tVDPzwupoM5r02qpvDyI2gFIsk0B2t5Z1sTuUqocm51myCVibhOZvccixyQ71QpLptqmGYD4r06YwTtDkXF12bHtdNq9VT0H6xSe3roUwsGp42g-QYKfdgAmPPB4mwiYKQNwRd6SxBeMgIdH1btF8X0MzzRQ=s0-d)
Example 7
![Write down the gradient and the y-intercept for the following equations: (a) y = 4x + 3 (b) 6x + 3y = 9](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_upyKUjyry6wf8NCxL2VQJ5iM1bZahg6JKW4b2shSAgApH--ld4JkhG9b2RH7lkSNCW-gza6bFFUjXoDOkcoLaRmxYylYJ58zphvwNwpq9JftrS0ghZCJpg6Zk50a1iVd9_w-xEVKBbwTFuOvKxyxPiKam2ods=s0-d)
Solution:
![(b) Write 6x + 3y = 9 in the form y = mx + c](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_sP2L92AFOUrv5RkyK0_4b6hBh_ZX5wUgm81Upa3iFLTsxw1-gQK1xWaVVq2EYZdOTXFN1vLNEwr5VRmCjeSMyQXVuaPk116oQJ6UfaFMDOUIkO3RnT2kgUB9sL1KWp6pBV4I6qh-ANbAZxWfPBBpKIErmtrJE=s0-d)
![Subtract 6x from both sides and then divide both sides by 3 to find y = -2x + 3.](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_t0N7qsKsPC6O5jCkhsvbx7VjKJCJNAI110PtVCZcw-geYJmdUS1dSFS5p91l7j6Szng-Z9jHJnvPqqGdY4Heh9-BA4HtGlCdqWmN5rDK9m_foNJ06mC_HqnxouPaF7agb2k9Pga7dnsXhlh1Ohz2NbxFjZKg=s0-d)
![Comparing y = -2x + 3 with y = mx + c gives m = -2, c = 3. So, the gradient is -2 and the y-intercept is 3.](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_srO65MgKER2TDdCJQwYq8onhk2iqQUW-reb_ckfK_hS0bRVUMpn9QpvD483dNZDw2hlpPb1FhK4BOpcoaBfwJYEovpeIv5x6twyJ8ygYMpMAM27GQNad0CABzWLmpk4s3jeTq5dfhnR8X52uMI1X_au9KeHSs=s0-d)
Example 8
Write down the equation of the straight line that has m = 5 and c = 3.
Solution:
Example 9
Calculate the gradient of the straight line given in the following diagram; and find its equation.
![The graph of the straight line joined by the points (0,5) and (3,11).](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_s2Ic-tCBtDOFLzlNi3aRAb-xjzdywCb5VcKg1CKt8a3j_BBIIVvSb_g5xl59mtN5qX3i1J1sW08vHfF7GPKAwCgXuo5sk7TwKCUR6X2Lu32rEk6rOhDUASaGAqhi6x8bKgV8rwkjnI83ih59zsGLWIpE94Q7k=s0-d)
Solution:
![Let (x1, y1) = (0, 5) and (x2, y2) = (3, 11). m = (y2 - y1) / (x2 - x1) = (11 - 5) / (3 - 0) = 6 / 3 = 2 and c = 5. The general equation of the straight line is y = mx + c. Substituting m = 2 and c = 5 gives y = 2x + 5.](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_tpxF-TyzIOPnB5uYBHuR7_nFaFwoqwUjt3hrjvT1Npd0Rz8ZPpYlB_BoKiBP5OysKwP7_nQe-kh5StmlZUJSJlRScnOTJii-_gnNJOgleLp7parRL09801mbGTku57Pf_Wgp935VGK5ULiV969ZrFgIGV2WBI=s0-d)
Example 10
Find the equation of the line joining the points (2, 3) and (4,7).
Solution:
![The graph of the straight line joined by the points (2,3) and (4,7).](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vx2sQ2rlGgRNUyCjTvzhA5MKtB9mC8nF1L06ftuOd3DmoYysJpAC6Zw7xiV9Y4LaxQfTqkopbh_QsJd33BAIff3jyk4Mlp_5oahsEzYIk7pn5daIXxKNSRxhaKDrxWJ8NoG317eEQfA87VPzJwjgJW7BhDS-s=s0-d)
![Let (x1, y1) = (2,3) and (x2, y2) = (4, 7). m = (y2 - y1) / (x2 - x1) = (7 - 3) / (4 - 2) = 4 / 2 = 2. The general equation of a straight line is y = mx + c. Therefore, y = 2x + c. Using point (2,3) which is on the line in y = 2x + c gives c = -1. So, the equation is y = 2x - 1.](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_uAGlELvTBghDeKsWrr37qnN_X8A6bJXFKX_GM1_11_3_pCjTUMEvIMwylEIPgHClkw4oOnVBMdt_UCNTzkWIQHWS90xLt2Ogx50Aucwuk7OZ40KYVTzidqAJyBLrcW2LlCHgBp7TO5DN0ijiajP9_92wdnIA=s0-d)
Often we need to know the general shape and location of a graph. In such cases, a sketch graph is drawn instead of plotting a number of points to obtain the graph.Two points are needed to obtain a straight line graph. It is simpler to find the points of intersection of the graph with the axes. These points are called thex- and y- intercepts.
x-intercept:
The y-coordinate of any point on the x-axis is 0. Therefore to find the x-intercept we put y = 0 in the equation and solve it for x.
y-intercept:
The x-coordinate of any point on the y-axis is 0. Therefore to find the y-intercept we put x = 0 in the equation and solve it for y.
![The graph shows x = 0 on the y-axis and y = 0 on the x-axis.](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_ulbrdF4331yhIhGg_MjB78M74O3zuusiYv0TC3UyqNW00FYMWaBHCy54L0OUIEP8DqViN0-6yfD5P11akWRGXzs85VA8cEjcoLSTt9yvmhYnjeM3b-A7v9hQZcVVgImXiuZ9W89JYiZAbDODQQqMYeBvE1087FYG99rw=s0-d) |
Example 11
Sketch the graph of y = 3x + 6.
Solution:
|
y = 3x + 6x-intercept:
![The sketch graph on the Cartesian plane that goes through (-2, 0) and (0, 6).](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_sxPjPcwZKCp42lNBJmVsvfSq3urMcMTHMGyuxD7-1lO1OLbgFRpzc7ZBygzIjif3Yw_BBjqxBenKS3QMko41lMiLCfwbP65hgG5siNgvYZwDic6cYQvvB5wKmLzIBoy9r9pO-dJ8PfP1CWbOpybFTqQcMkbyXyRCRIVQ=s0-d) ![When y = 0, x = -2](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_u5U7VKlS5f7t7eGQXNT-lREzdvAX3hdE0GpTa7FK8Wekz0lV_AgDzFbacwHRf6bWEFUIImkJ56pIcU8pg_XUFV3UjY-RtS__Hx4UcJTNBM-m5Gp3Nz_9_nalnflKl6ci2gcy5wPFGUcrBrXRR9A1kQfkgoEpBNKOw=s0-d)
y-intercept:
![When x = 0, y = 6](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_tzoH4c-q8sVDUC_R43ARFMcxM0k1fWGoLJcNygKfWlOPCMm0wZ9VRM1LeEm_-9qgBJ2czTLHtiksMdgwpIJ8fEY8Oex1iIhVwNABrWSaeS7fN6nvQbrqzOWa-d2xCCd2cVnXLHLhBWZ1UtG42hKhhuoW5QucBC9A=s0-d) |
|
Note:
We often represent the gradient and the y-intercept of the straight line by m and c respectively.
In the previous example:
![m = Rise / Run = (6 - 0) / (0 - (-2)) = 6 / 2 = 3](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_stVWOAyJmsz4D-jREOkpeWspRSmV07AEBgMW-av1HdslTedC3z73m0rhDWLF2iX4YhtfBrwIFseOzcwhTIPR-kC_C-xqC28m3VSxTd-JXFQ8HuwrDQ6-7LZA1oySG0UqrwZ0XuUNwMs3eaZ9-Wf9zOfGqRL_4xbcfamA=s0-d)
![And c = y-intercept = 6](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_shG_JQ7FY5QMJvkRJZ-oNjnOqRVPFxv1TDlrRv7HJvRQkPZVwesMovup_0b3DpQClmkt54PtTCpZkRdXD5UBurCz5Bk0yDXnwqz-oSqQZv0KuOTJ4bf_IzvYSfwlemWct56CjzxLJ8hpJnXOCQX1koTbBxO4PVj303=s0-d)
From the ongoing discussion we can infer that y = 3x + 6 is a straight line with a gradient of 3 and y-intercept of 6.
In the example under consideration, the gradient of the straight line is positive. So, the straight line slopes upward as the value of x increases. |
Example 12
Sketch the graph of y = –2x + 4.
Solution:
|
y = –2x + 4
x-intercept:
![The sketch graph of the line that passes through the points (2, 0) and (0, 4).](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_uUCxw-qnc7pqFlU8N-jo_XKjJPSqSWORWjBg9clQCLUGX7l7dTcmSL2rsB-4zcZhWelftXiRKO0IQQBegGHqKAG33SxHvZk4rAfphMYb38VpvR4n1hDzmjZsfdwzywMEfhYCJ7fhmXD_o0U-N_0WpaI0SjwFdsgqu7ZQ=s0-d)
![When y = 0, x = 2](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_umHc3bkp9TB6-j-jemkwfuuhCrRcjejMqg-cvS8s85w7IkWi8vuvVlo0HDrXXxG3jr-uk7tuM1epBndGBBVIZNhkzlfcHGPZQGMGfCgmjgI1cl8Z3qESU43VNPJk8BPXZNjZ3Pl3q3Vscp5J4Y8YBdUqTaemK-qi0=s0-d)
y-intercept:
![When x = 0, y = 4](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vse0LXvqkugH3JKE7xpvssRm7fL2nTNC-2pMxVtZlgyk5WVBOOnqvtvM5f7srMuIhHzsyODm4i0Dw3nkl6pGRcZLe13ahn7pNqmHeusugsTEQbeaZr1F9bZ20jIDA-5fs3-pGmmqkTL86_7Y1PmjED5AwFpZB8FQ=s0-d) | |
Note:
![c = y-intercept = 4](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_uumRhs23fX8mJyl0g6YWwxf2XTocdKBL2_ZdfAMHtaa7oGG064OH1q2wIhk3YfqBFHxi8KB4pU2zBpvbgU0ygjA93QnuUZGMKi-dHa_6NQ4CmcRpAep3UyxGuSIZfgPLwRLOVndKFQ3vejZpNCet4gY1QHwkUITag=s0-d)
![And m = rise/run = (0 - 4) / (2 - 0) = -4 / 2 = -2](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vb94c6EUjHcd2Dxpc9_gOLy2vHhWki9xlH_qCYV6vkl5EYyROj994Y5Zs8owcuIdfVCNJ5Qymlt7IVzErpSlc6X9VMd3l5RujqgiZinuUXJC5zJdFN4bNOuJUi6gMrO7JLzBUARI-cRQj4E5eRiW3hTJJgCIRBAtIU=s0-d)
From the ongoing discussion we find that the linear function y = –2x + 4 represents the equation of a straight line with a gradient of –2 and y-intercept of 4.
In the example under consideration, the gradient of the straight line is negative. So, the straight line slopes downward as the value of x increases.
Example 13
Sketch the graph of y = 2x.
Solution:
|
y = 2xx-intercept:
![When y = 0, x = 0](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_s0wng8oayZpIUtPHw9lkSRu4Ysi49Rqb4hIU_hKKAVo6kfkKc3N52o0eub92gZCZse48fjtCmMkLLZDY7WtYGo8R4DcUE0CjEnYIdO2UGvmIJeK39bieU3HIC07MQc4f7f3SBPq7OSdU9OqFo0bVE5Tn_0pBoN1Pg=s0-d)
y-intercept:
When x = 0, y = 0. |
|
As both the x- and y- intercepts are (0, 0), another point is needed.
We find when x = 5, y = 10. So, (5, 10) is an example of another point that can be used to form the straight line graph.
Alternative technique:
Use the gradient-intercept method:
![Comparing y = 2x with y = mx + c gives m = 2, c = 0.](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_u14uTP0M-GCh8lKjN5dSSf1Z-qWhGgqdbz1FwCKXpMDrx7GJR9LRa7xTp-WUS3K141Uj1KC0ZU1kPxabwIM0Xq-ff5fn9-IvBf8Fh5wgNTzizNyFe5y0xHPqPdRgTsPxSf1s8axVGDgXnycnaOCC_yPK6ftaxE-dlt=s0-d)
So, the straight line passes through (0, 0). Use this point to draw a line of slope 2 (i.e. go across 3 units and up 6 units).
![The graph of y = 2x that highlights a rise of 6 for every run of 3.](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_sv5hKINLoWq_-eV_fRBIBeqWtzsrsFU68KKGhA3m06c3e9ex465K9Qap8Bt2EI0Z_5IRKYjLKJp0niz-T5MWRW3PBI6lFOY8HvannD00nz57sB_n2qDlp9cyKjWFSv9ddNsxp2uWfduZ6HFrOE1yQsVZOkfdFuafqfNw=s0-d)
Note:
It is simpler to find the run and rise if we start from the y-intercept.
Example 14
Sketch the graph of 7y – 5x = 35.
Solution:
|
7y – 5x = 35
x-intercept:
![When y = 0, x = -7](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_s3VfL7jO5PogR0ZP2KWEBC42VBQDVDP1Zw_USKFNbM_-_H8sXSIiZzyvzMs8dDFqM7ghLjIEHlKjDOZyKaE5PSQyJLPeoJMc_-sb7-SuJs9pHT3dBE6TCCjmkjy83T4DawDCWKnpo_IHBLl09_q0nfhU0f_KhMSvk=s0-d)
y-intercept:
![When x = 0, y = 5](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_tktyP7DJ7l6ldj6cRnIxjEouqvak2iYuvLSJ9eHCX6rnFyg2Izh2qFKTPxjjFViOX94dPL78mW9dpXpSK95utKRkZYjAR6oDp8Ux1ABGirGEDdWvMaCGDJrBS4U7h4B1WtobIgQRgN-Qiqf1-YAhmOFK8synGI7Q=s0-d)
A horizontal line is parallel to the x-axis, as shown in the following diagram.
![A graph with a horizontal line that is parallel to the x-axis.](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_uN4APJUFG_v8ym9G8WCjuuHEfofpX1VOmWuG8t8QnjVAgXneyNbP6QeZcUf6NUZpOkURGsKe4BOHKAGh4pgN0e7kX_6c12D7BWCnWwQ50x762bUnxBlWwdYo5dOaUaC8NnMd5jAJHOCPHY0HqliqaJ06SKy5t2Lg=s0-d)
![Using the two points (x1, c) and (x2, c) on the horizontal line to calculate the gradient, m, we find that m = 0.](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_tWbqCha4rHxQKuyQLGkYOVjcq2JpCVZbC-indSa55UepTwmYMqAadd8qAwOOK5f8yCII8fLcHZMbX4CoVPvrYe1wh7wLuajmfq0DQzcvbVQKF867NfsK6taG5p2Mt-nDflKNBhVlSeR1pmrJVfJAEGZZaqB0keiw=s0-d)
![So, the gradient of the horizontal line is zero and its equation is given by y = c where c is the y-intercept.](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_s_kzOB54yK3ogKYjWv_nE5QcFTOp4FbFfbXJWnl7UZiEFD-8mwBMUIP2YqYS1ta_l8-5SYQjUqI4eCq3kSjvUoG20kYWeQDGgW4A_fN-bKijbSWgzsWmLtLE4YmoXlk6IyKKleXsxckcAswhRIRvRmFLTlHvC-aQ=s0-d)
Note:
The value of the y-coordinate on a horizontal line is always equal to c, the y-intercept.
Example 15
Sketch the graph of y = 8.
Solution:
A vertical line is parallel to the y-axis, as shown in the following diagram.
![The graph shows a vertical line that is parallel to the y-axis.](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vkHFJCYpaWZ5uIT9hLVrG7oZ2MxnLfG3z2H3Q8V6f0h6-oV3Y316Y09KjywoikXZfVLDsuKlO8i30PCqu2iA5uFxJO-fW9xvXgYVRLWrqI_iXq9SzT_ccXL6GfUd9u6DH8Nd5io0rpEDynmD90cWN2Qf6govc=s0-d)
![Using the two points (k, y1) and (k, y2) on the vertical line to calculate the gradient, m, we find the gradient is undefined.](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_uxDiko3It3n44in3IvyFXP9bqwUz5IA8BDpd0mSjRqlqQ5luzAlDI4xLivXPHW0FZGG2jMfGg6BIlYyZMomRivWcmlu-LWw7LJy98z-c8m2tQwlaDR2JXA1nel6MY1LhAeafJ7LucXQxkNXJ6X2qERD9oV6g=s0-d)
![So, the gradient of the vertical line is undefined and its equation is given by x = k where k is the x-intercept.](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_t093Ein-TD3MICdJQnzgYueWb3mt9k0g3xjb1AgJEkuuEC0CXKxUif_ruXPO81lLVc-_jBdiStst5yIQ7ScvFrGUkgCX7GzVtUXobpwLDlRWxUz2neippiN7XESTuEzyYgOm9kZV-dlVyPJLpPyjggR3TaqA0=s0-d)
Note:
The value of the x-coordinate on a vertical line is always equal to k, the x-intercept.
Example 16
Sketch the graph of x = 8.
Solution:
![The graph shows the vertical line of x = 8 that is parallel to the y-axis and cuts the x-axis at x = 8.](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_uIzladlrIiERgZxp4QvXi3ngJwzGjf44cKq4Ub-9iZ5i_mn7JGPs10Lz7BrwimGqKUvvrLgSUHz7jk-2CZpTr0VyrFJnY-IkjAaS19XK-M1obBpnZam_wWcIl8UHgI-N_H3-l4_zIRaKi52_XH8Rm1ElSAFVU=s0-d) |
|
|
|
|
|
|
No comments:
Post a Comment